Homomesy in products of three chains and multidimensional recombination

Corey Vorland

North Dakota State University

January 13, 2018

- For order ideals of [a] × [b], Propp and Roby have a homomesy result for the actions of rowmotion and promotion with the cardinality statistic.
- For the homomesy result involving rowmotion, Einstein and Propp used a technique called recombination to produce an alternate, elegant proof.
- I generalize recombination to higher dimensions to show a higher dimensional homomesy result on order ideals of [2] × [a] × [b].

Toggles, rowmotion, and promotion

2 Homomesy

Higher dimensional promotion

Recombination

S Proof sketch of the homomesy result

Toggles, rowmotion, and promotion

2 Homomesy

Bigher dimensional promotion

A Recombination

Proof sketch of the homomesy result

Definition

Let P be a poset. A subset I of P is called an *order ideal* if for any $t \in I$ and $s \leq t$ in P, then $s \in I$.

Example:

Let P be a poset and J(P) its set of order ideals.

Definition

For any $e \in P$, the *toggle* $t_e : J(P) \rightarrow J(P)$ is defined as follows:

$$t_e(I) = \begin{cases} I \cup \{e\} & \text{if } e \notin I \text{ and } I \cup \{e\} \in J(P) \\ I \setminus \{e\} & \text{if } e \in I \text{ and } I \setminus \{e\} \in J(P) \\ I & \text{otherwise} \end{cases}$$

There are two ways we can think of rowmotion.

Definition

Let P be a poset and $I \in J(P)$. Row(I) is the order ideal generated by the minimal elements of $P \setminus I$.

Theorem (Cameron and Fon-der-Flaass)

Rowmotion can be performed by toggling a poset from top to bottom.

- Rowmotion toggles our poset from top to bottom.
- We can define, analogously, *promotion* which toggles our poset from left to right.
- Striker and Williams showed there is an equivariant bijection between orbits under rowmotion and promotion (i.e. they have the same orbit structure).

Toggles, rowmotion, and promotion

2 Homomesy

Bigher dimensional promotion

A Recombination

Proof sketch of the homomesy result

Definition (Propp and Roby)

The triple (S, τ, f) exhibits homomesy if over every orbit of the action $\tau : S \to S$, the average of the statistic fover the orbit is the same. If such an average c exists, we will say the triple is c-mesic.

Theorem (Propp and Roby)

Order ideals of $[a] \times [b]$ under promotion with cardinality statistic are *c*-mesic where c = ab/2.

Theorem (Propp and Roby)

Order ideals of $[a] \times [b]$ under rowmotion with cardinality statistic are *c*-mesic where c = ab/2.

Einstein and Propp discovered an elegant proof technique for the second result; they named this recombination.

Promotion example

$$\frac{2+5+3+1+4}{5} = 3$$

The previous theorem says on every orbit, the average value of the cardinality statistic is 3.

Does a similar result hold for a higher dimensional product of chains?

Toggles, rowmotion, and promotion

2 Homomesy

Higher dimensional promotion

4 Recombination

Proof sketch of the homomesy result

Let *P* be a poset with *n*-dimensional lattice projection and let *v* be an *n*-dimensional vector with entries ± 1 . Define *promotion with respect to v*, Pro_v , by toggling elements on the hyperplanes $\langle x, v \rangle = i$, sweeping through from largest *i* to smallest.

Example: Pro(1,1,1)

Let *P* be a poset with *n*-dimensional lattice projection and let *v* be an *n*-dimensional vector with entries ± 1 . Define *promotion with respect to v*, Pro_v , by toggling elements on the hyperplanes $\langle x, v \rangle = i$, sweeping through from largest *i* to smallest.

Example: Pro(1,1,1)

Let *P* be a poset with *n*-dimensional lattice projection and let *v* be an *n*-dimensional vector with entries ± 1 . Define *promotion with respect to v*, Pro_v , by toggling elements on the hyperplanes $\langle x, v \rangle = i$, sweeping through from largest *i* to smallest.

Example: Pro_(1,1,1)

Let *P* be a poset with *n*-dimensional lattice projection and let *v* be an *n*-dimensional vector with entries ± 1 . Define *promotion with respect to v*, Pro_v , by toggling elements on the hyperplanes $\langle x, v \rangle = i$, sweeping through from largest *i* to smallest.

Example: Pro(1,1,1)

Let *P* be a poset with *n*-dimensional lattice projection and let *v* be an *n*-dimensional vector with entries ± 1 . Define *promotion with respect to v*, Pro_v , by toggling elements on the hyperplanes $\langle x, v \rangle = i$, sweeping through from largest *i* to smallest.

Example: Pro(1,1,1)

Let *P* be a poset with *n*-dimensional lattice projection and let *v* be an *n*-dimensional vector with entries ± 1 . Define *promotion with respect to v*, Pro_v , by toggling elements on the hyperplanes $\langle x, v \rangle = i$, sweeping through from largest *i* to smallest.

- $\mathsf{Pro}_{(1,1,1)}$ is Row.
- Dilks, Pechenik, and Striker showed there exists an equivariant bijection between different promotions (i.e. they have the same orbit structure).

Theorem (V.)

Let $v = (\pm 1, \pm 1, \pm 1)$. Order ideals of $[2] \times [a] \times [b]$ under Pro_v with cardinality statistic are *c*-mesic with c = ab.

The proof has two main components:

- A generalization of recombination to create a bijection between the orbits of different promotions
- A connection to increasing tableaux to show the theorem for v = (1, 1, -1)

Toggles, rowmotion, and promotion

2 Homomesy

Bigher dimensional promotion

Recombination

Proof sketch of the homomesy result

2-dimensional recombination was originally defined by Einstein and Propp.

3-dimensional example:

Recombination

Recombination

Recombination

Theorem (V.)

Let P be a poset with n-dimensional lattice projection and $l \in J(P)$. Let v and u be n-dimensional vectors with entries ± 1 such that v and u differ in one component. Then $\operatorname{Pro}_u(\Delta_v^{\gamma} I) = \Delta_v^{\gamma}(\operatorname{Pro}_v(I))$.

In other words, recombination works in this setting.

Toggles, rowmotion, and promotion

- 2 Homomesy
- Bigher dimensional promotion
- Recombination

S Proof sketch of the homomesy result

Theorem (V.)

Let $v = (\pm 1, \pm 1, \pm 1)$. Order ideals of $[2] \times [a] \times [b]$ under Pro_v with cardinality statistic are *c*-mesic with c = ab.

The proof has two main components:

- A generalization of recombination to create a bijection between the orbits of different promotions
- A connection to increasing tableaux to show the theorem for v = (1, 1, -1)

Definition

An increasing tableau is a filling of a Young diagram with strictly increasing rows and columns. The set of increasing tableaux of shape λ with largest entry q is denoted $\ln^q(\lambda)$.

Theorem (Dilks, Pechenik, Striker)

There exists a bijection between $J([a] \times [b] \times [c])$ and $\ln c^{a+b+c-1}(a \times b)$.

Corollary

There exists a bijection between $J([2] \times [a] \times [b])$ and $\ln c^{a+b+1}(2 \times a)$.

Bijection example

 $Pro_{(1,1,-1)}$ on $J([a] \times [b] \times [c])$ corresponds to Pechenik's *K*-promotion on increasing tableaux.

Corey Vorland (NDSU)

Theorem (Bloom, Pechenik, Saracino)

Let λ be a 2 × n rectangle for any n and let σ_{λ} be the statistic of summing the entries in the boxes of λ . Then for any q, $\text{Inc}^{q}(\lambda)$ under K-Pro with statistic σ_{λ} is homomesic.

This shows $Pro_{(1,1,-1)}$ on $J([2] \times [a] \times [b])$ with cardinality statistic is homomesic. Our theorem follows using recombination.

- Rush and Wang showed order ideals of any minuscule poset exhibit homomesy under rowmotion with cardinality statistic.
- The first of my main results can be rephrased as a 2-chain cross a type A minuscule poset.

Corollary (V.)

For any $v = (\pm 1, \pm 1, \pm 1)$, order ideals of a 2-chain cross a type B minuscule poset under Pro_v with cardinality statistic are homomesic.

Let $v = (\pm 1, \pm 1, \pm 1)$.

- Order ideals of $[3] \times [3] \times [3]$ under Pro_v with cardinality statistic are *c*-mesic with c = 27/2.
- Order ideals of [3] \times [3] \times [4] under ${\rm Pro}_{\nu}$ with cardinality statistic are not homomesic.
- Order ideals of $[2] \times [2] \times [2] \times [2]$ under Pro_v with cardinality statistic are *c*-mesic with c = 8.
- Order ideals of $[2]\times[2]\times[2]\times[3]$ under ${\rm Pro}_v$ with cardinality statistic are not homomesic.
- Order ideals of $[2]\times[2]\times[2]\times[2]\times[2]\times[2]$ under ${\rm Pro}_\nu$ with cardinality statistic are not homomesic.

- Using Pechenik's homomesy result on the frame of increasing tableaux, we obtain a homomesy result on the "boundary" of [a] × [b] × [c].
- We have refined homomesy results on rotationally symmetric "columns" when P = [2] × [a] × [b] and when P = [a] × [b] × [c] using the "boundary" of the poset.

Thanks!

C. Vorland, Homomesy in products of three chains and multidimensional recombination, http://arxiv.org/abs/1705.02665